

1. Consider the following neural network. Single-circled nodes denote variables (e.g., x_1 is an input variable, h_1 is an intermediate variable, \hat{y} is an output variable), and double-circled nodes denote functions (e.g., Σ takes the sum of its inputs, and σ denotes the logistic function $\sigma(x) = \frac{1}{1+e^{-x}}$). In the network below,

$$h_1 = \frac{1}{1 + e^{-x_1 w_1 - x_2 w_2}}.$$

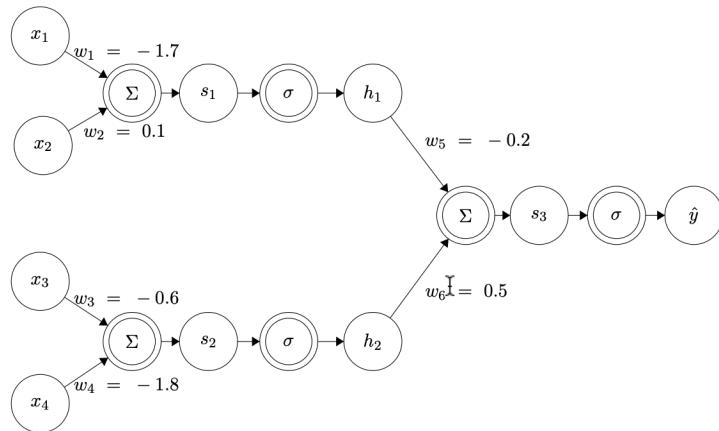


Figure 1: Neural Net architecture

Suppose we use an L2 loss function:

$$L(y, \hat{y}) = \|y - \hat{y}\|_2^2.$$

We are given a data point $(x_1, x_2, x_3, x_4) = (-0.7, 1.2, 1.1, -2)$ with true label $y = 0.5$.

Use the backpropagation algorithm to compute the partial derivative: $\frac{\partial L}{\partial w_1}$.

2. The standard cost function for k-means clustering is defined as:

$$L = \sum_{j=1}^k \sum_{x_i \in S_j} \|x_i - \mu_j\|_2^2$$

where S_j is the set of data points x_i assigned to cluster j , and μ_j is the centroid of cluster j .

Answer the following:

(a) **Optimality of the Centroid and Distance Metrics:**

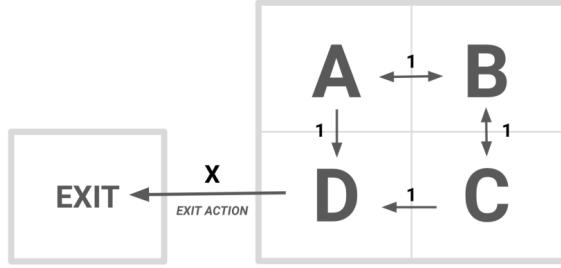
- i. Prove that for a given set of points S_j assigned to a cluster j , the unique vector μ_j that minimizes $\sum_{x_i \in S_j} \|x_i - \mu_j\|_2^2$ is the sample mean of the points in S_j .
- ii. How would the optimal cluster center μ_j change if the L_2 norm (Euclidean distance squared) in the cost function were replaced with the L_1 norm (Manhattan distance), i.e., $L' = \sum_{j=1}^k \sum_{x_i \in S_j} \|x_i - \mu_j\|_1$? Provide a characterization of this new optimal center (e.g., geometric median).

(b) **Convergence and Initialization:**

- i. The k-means objective function L is non-convex. Explain the implications of this non-convexity for the convergence of the algorithm. Why does the standard k-means algorithm (Lloyd's algorithm) guarantee convergence to a local minimum but not necessarily the global minimum?

(c) **Relationship to Gaussian Mixture Models (GMMs):**

- i. What specific assumptions must be made about the covariance matrices and mixing coefficients of a GMM for its EM algorithm to effectively reduce to the k-means algorithm?
- ii. Explain how the "hard" assignment of k-means (each point belongs to exactly one cluster) contrasts with the "soft" assignment in GMMs.
- 3. Consider below Markov Decision Process (MDP) with four states: A , B , C , and D . From states A , B , and C , the agent can choose from the actions: LEFT, RIGHT, UP, or DOWN, unless obstructed by a wall in that direction. From state D , the only available action is a special EXIT action, which grants the agent a terminal reward of x . All other actions (non-exit actions) yield a reward of 1.



(a) **(Deterministic actions)**

Assume all actions are deterministic, and the discount factor is $\gamma = \frac{1}{2}$. Express the value function $V^*(s)$ for the following states in terms of x , given that the optimal value function satisfies:

$$\begin{aligned} V^*(D) = \\ V^*(C) = \end{aligned}$$

$$\begin{aligned} V^*(A) = \\ V^*(B) = \end{aligned}$$

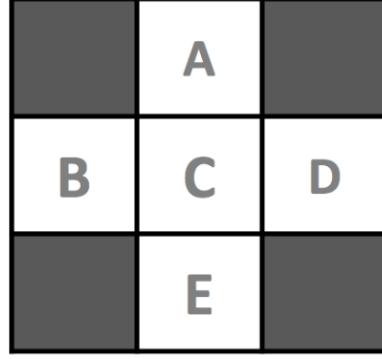
(b) **(Stochastic actions)**

Now suppose each non-exit action succeeds with probability $\frac{1}{2}$; otherwise, the agent remains in the same state and receives a reward of 0. The EXIT action from state D is still deterministic and always succeeds. Let $\gamma = \frac{1}{2}$ as before.

Find the value of x for which the agent is indifferent between two actions from state A : taking action **DOWN** to go to D , and taking action **RIGHT** to go to B . In other words, solve for x such that:

$$Q^*(A, \text{DOWN}) = Q^*(A, \text{RIGHT})$$

4. Consider a Gridworld scenario where an agent aims to estimate the value function of each state using TD Learning and Q-Learning.



Suppose we observe the following $(s, a, s', R(s, a, s'))$ transitions and rewards (in order from left to right):

$$(\text{B, East, C, } 2), \quad (\text{C, South, E, } 4), \quad (\text{C, East, A, } 6), \quad (\text{B, East, C, } 2)$$

Assume the initial value of each state is 0, the discount factor $\gamma = 1$, and the learning rate $\alpha = 0.5$.

- (a) What are the learned state values from TD learning after all four transitions?
- (b) What are the learned Q-values from Q-learning after all four observations? Use the same $\alpha = 0.5$ and $\gamma = 1$.