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1. Consider the following neural network. Single-circled nodes denote variables (e.g., x1 is an input
variable, h1 is an intermediate variable, ŷ is an output variable), and double-circled nodes denote
functions (e.g., Σ takes the sum of its inputs, and σ denotes the logistic function σ(x) = 1

1+e−x ).
In the network below,

h1 =
1

1 + e−x1w1−x2w2
.

Figure 1: Neural Net architecture

Suppose we use an L2 loss function:

L(y, ŷ) = ∥y − ŷ∥22.

We are given a data point (x1, x2, x3, x4) = (−0.7, 1.2, 1.1, −2) with true label y = 0.5.
Use the backpropagation algorithm to compute the partial derivative: ∂L

∂w1
.

2. The standard cost function for k-means clustering is defined as:

L =

k∑
j=1

∑
xi∈Sj

||xi − µj ||22

where Sj is the set of data points xi assigned to cluster j, and µj is the centroid of cluster j.
Answer the following:
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(a) Optimality of the Centroid and Distance Metrics:
i. Prove that for a given set of points Sj assigned to a cluster j, the unique vector µj that

minimizes
∑

xi∈Sj
||xi − µj ||22 is the sample mean of the points in Sj .

ii. How would the optimal cluster center µj change if the L2 norm (Euclidean distance
squared) in the cost function were replaced with the L1 norm (Manhattan distance),
i.e., L′ =

∑k
j=1

∑
xi∈Sj

||xi − µj ||1? Provide a characterization of this new optimal
center (e.g., geometric median).

(b) Convergence and Initialization:
i. The k-means objective function L is non-convex. Explain the implications of this

non-convexity for the convergence of the algorithm. Why does the standard k-means
algorithm (Lloyd’s algorithm) guarantee convergence to a local minimum but not nec-
essarily the global minimum?

(c) Relationship to Gaussian Mixture Models (GMMs):
i. What specific assumptions must be made about the covariance matrices and mixing

coefficients of a GMM for its EM algorithm to effectively reduce to the k-means algo-
rithm?

ii. Explain how the ”hard” assignment of k-means (each point belongs to exactly one
cluster) contrasts with the ”soft” assignment in GMMs.

3. Consider below Markov Decision Process (MDP) with four states: A, B, C, and D. From states
A, B, and C, the agent can choose from the actions: LEFT, RIGHT, UP, or DOWN, unless obstructed
by a wall in that direction. From state D, the only available action is a special EXIT action,
which grants the agent a terminal reward of x. All other actions (non-exit actions) yield a reward
of 1.

(a) (Deterministic actions)
Assume all actions are deterministic, and the discount factor is γ = 1

2 . Express the value function
V ∗(s) for the following states in terms of x, given that the optimal value function satisfies:

V ∗(D) = V ∗(A) =

V ∗(C) = V ∗(B) =

(b) (Stochastic actions)
Now suppose each non-exit action succeeds with probability 1

2 ; otherwise, the agent remains in
the same state and receives a reward of 0. The EXIT action from state D is still deterministic
and always succeeds. Let γ = 1

2 as before.
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Find the value of x for which the agent is indifferent between two actions from state A: taking
action DOWN to go to D, and taking action RIGHT to go to B. In other words, solve for x such
that:

Q∗(A, DOWN) = Q∗(A, RIGHT)

4. Consider a Gridworld scenario where an agent aims to estimate the value function of each state
using TD Learning and Q-Learning.

Suppose we observe the following (s, a, s′, R(s, a, s′)) transitions and rewards (in order from left
to right):

(B, East, C, 2), (C, South, E, 4), (C, East, A, 6), (B, East, C, 2)

Assume the initial value of each state is 0, the discount factor γ = 1, and the learning rate
α = 0.5.

(a) What are the learned state values from TD learning after all four transitions?
(b) What are the learned Q-values from Q-learning after all four observations? Use the same

α = 0.5 and γ = 1.
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