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1. Consider the following neural network. Single-circled nodes denote variables (e.g., x; is an input
variable, hj is an intermediate variable, ¢ is an output variable), and double-circled nodes denote
functions (e.g., ¥ takes the sum of its inputs, and o denotes the logistic function o(z) = H%)
In the network below,
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Figure 1: Neural Net architecture

Suppose we use an L2 loss function:
. 112
L(y,9) = lly = 9l2-

We are given a data point (x1,x2,x3,z4) = (—0.7, 1.2, 1.1, —2) with true label y = 0.5.

Use the backpropagation algorithm to compute the partial derivative: 6%1'

2. The standard cost function for k-means clustering is defined as:
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where S is the set of data points x; assigned to cluster j, and p; is the centroid of cluster j.

Answer the following:



3.

(a) Optimality of the Centroid and Distance Metrics:

i. Prove that for a given set of points S; assigned to a cluster j, the unique vector p; that
minimizes ) o s ||z; — uj||3 is the sample mean of the points in S;.

ii. How would the optimal cluster center p; change if the Ly norm (Euclidean distance
squared) in the cost function were replaced with the L; norm (Manhattan distance),
ie, L' = Z;’:l ineSj l|zs — p4]]1?7 Provide a characterization of this new optimal
center (e.g., geometric median).

(b) Convergence and Initialization:

i. The k-means objective function L is non-convex. Explain the implications of this
non-convexity for the convergence of the algorithm. Why does the standard k-means
algorithm (Lloyd’s algorithm) guarantee convergence to a local minimum but not nec-
essarily the global minimum?

(c) Relationship to Gaussian Mixture Models (GMMs):

i. What specific assumptions must be made about the covariance matrices and mixing
coefficients of a GMM for its EM algorithm to effectively reduce to the k-means algo-
rithm?

ii. Explain how the "hard” assignment of k-means (each point belongs to exactly one
cluster) contrasts with the ”soft” assignment in GMMs.

Consider below Markov Decision Process (MDP) with four states: A, B, C', and D. From states
A, B, and C, the agent can choose from the actions: LEFT, RIGHT, UP, or DOWN, unless obstructed
by a wall in that direction. From state D, the only available action is a special EXIT action,

which grants the agent a terminal reward of z. All other actions (non-exit actions) yield a reward
of 1.

xT+— D -« C

(Deterministic actions)
Assume all actions are deterministic, and the discount factor is v = % Express the value function
V*(s) for the following states in terms of x, given that the optimal value function satisfies:

V(D) = V*(A) =
V*(C) = V*(B) =

(Stochastic actions)

Now suppose each non-exit action succeeds with probability %; otherwise, the agent remains in
the same state and receives a reward of 0. The EXIT action from state D is still deterministic
and always succeeds. Let v = % as before.



Find the value of x for which the agent is indifferent between two actions from state A: taking
action DOWN to go to D, and taking action RIGHT to go to B. In other words, solve for x such
that:

Q*(A,DOWN) = Q*(A, RIGHT)

. Consider a Gridworld scenario where an agent aims to estimate the value function of each state
using TD Learning and Q-Learning.

Suppose we observe the following (s, a, s, R(s,a, ")) transitions and rewards (in order from left
to right):

(B, East, C, 2), (C, South, E, 4), (C, East, A, 6), (B, East, C, 2)

Assume the initial value of each state is 0, the discount factor v = 1, and the learning rate
a=0.5.
(a) What are the learned state values from TD learning after all four transitions?

(b) What are the learned Q-values from Q-learning after all four observations? Use the same
a=0.5and y=1.



